Phy	vsics	16	50
· · ·		т.	0

N	ame
ΙN	anne

Lab Time _____ Dragon ID _____

- 1. You push a heavy object and a light object with the same force. Which object has a greater acceleration?
 - a) Heavy object
 - b Light object
 - c) Accelerations are equal
 - d) Not able to determine

- $\frac{\vec{F}}{m} = \vec{a}$
- 2. You apply the same torque to two different merry-go-rounds. The mass of both the merry-go-rounds is the same but one is shaped like a disk while the other is shaped like a ring. Which merry-go-round is spinning faster?
 - a) The disk shaped merry-go-round is spinning faster
 - b) The ring shaped merry-go-round is spinning faster
 - c) The both spin at the same rate
 - d) Nota able to determine
- 3. The slope of the position vs time graph is
 - a) the change in velocity.
 - b the velocity.
 - c) the acceleration.
 - d) the impulse.
- 4. The slope of the velocity vs time graph is
 - a) the change in velocity.
 - b) the velocity.
 - c the acceleration.
 - d) the impulse.
- 5. The area under the force vs time graph is
 - a) the change in momentum.
 - b) the position.
 - c) the acceleration.
 - d) the angular acceleration.

The next two questions refer to two objects. Object one is more massive then object two so $m_1 > m_2$. You push both objects for the same time with the same force.

- 6. Compare the momentum, p, of each object.
 - a) $p_1 > p_2$ b) $p_1 = p_2$
 - b) $p_1 = p_2$ c) $p_1 < p_2$
- 7. Compare the velocity, v, of each object.

a)
$$v_1 > v_2$$

b) $v_1 = v_2$
c) $v_1 < v_2$

$\vec{F}\Delta t = \Delta \vec{p}$

 $F\Delta t = \Delta \vec{p}$

$$m_1 v_1 = p_1 = p_2 = m_2 v_2$$
$$m_1 > m_2 \therefore v_1 < v_2$$

$$\frac{\vec{\tau}}{I} = \vec{\alpha}$$